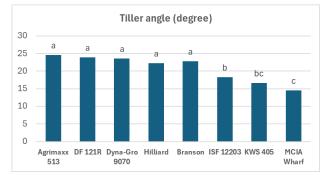
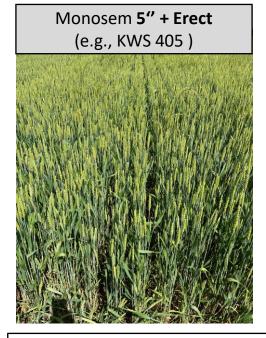


Wheat Agronomy- Setting up a high yield potential

Manni Singh, P. Copeland, D. Pennington, P. Arias, W. Silva

- Overall goal: design a canopy that can maximize <u>light interception</u>, <u>light use efficiency</u>, and conversion to grain.
- > Systems approach to achieve this goal by combining variety (genetics) with management.
- > Optimal **planting time** is critical in setting up a high yield potential. When to start? Soon after hessian fly free date (as a rule of thumb), around mid-Sept in the thumb of MI.
- Magnitude of yield penalty with late planting depends on weather. Typically, $\leq 10\%$ yield loss when planted by 1st week of Oct., $\leq 20\%$ loss till mid-Oct, and $\geq 20\%$ loss afterwards.
- **Poptimal seeding rate:** lowest for Sept plantings ($\leq 1.0 \text{ m/ac}$) and increased as planting was delayed to early/mid Oct. (1.2 − 1.4 m/ac) and after mid-Oct ($\geq 1.6 \text{ m/ac}$).
- Number of days for field work (in Sept.-Oct.) are declining over time in Michigan.
- ➤ High-speed **planting methods**, such as broadcast incorporation, may offer a viable solution for achieving timely planting.
- On the other hand, our work from small plot research found yield benefit from use of precision planter and narrow row spacing.
- Recent on-farm trials showed higher seeding depth variability in broadcast versus drill. Precision planting had lowest depth variability at all sites.
- ➤ However, our recent research showed <2% impact of **seeding depth** on yield.


- ➤ 8 33% yield increase with precision planter (5"rows) over grain drill/air seeder at 7 of 11 sites.
- ➤ No consistent yield difference between broadcast and drill at all 17 site-years.
- Highest effective tillers in precision planting and broadcast, lowest in drill.
- ➤ Increase in seeding rate in broadcast did not impact yield.


- Winter wheat varieties differ genetically in canopy architecture. Most current varieties in Michigan are droopy type. Tiller angle estimation is the best way to quantify canopy types.
- ➤ **Droopy varieties** had wider tiller angle and intercepted greater light than erect types.
- ➤ **Erect varieties** had narrower tiller angle and had greater light use efficiency after canopy closure.
- ➤ Under high yield environments (e.g., narrow rows, high inputs, early planting), shading of lower canopy can be a limiting factor. So, use of erect varieties can be beneficial.
- However, interception of light is critical for lower yield environments, and droopy canopies would be more beneficial than erect ones.
- Ongoing work is testing varietal canopies under narrow and wide rows using precision planter vs drill, & multi-crop planting equipment options.

Variety with Erect (left), droopy (right) canopy.

Key messages: (for more info: visit agronomy.msu.edu, click extension/small grains)

- ➤ Timely planting is crucial in achieving high yields and profits, faster planting technologies can help plant early.
- ➤ Potential for **reduction in seeding rate** without limiting yield. Test using replicated strips in your field (20-30% lower than your seed rate).
- Narrow row spacing and improved seed placement can lead to increased crop uniformity, grain yield, and quality.
- ➤ Match canopy type of wheat variety to your production system.
- ➤ High yield environments (narrow rows, high input)- use varieties with erect canopies.